
J. M. Parker 
Dept. of Mechanical Engineering, 

University of Kentucky, 
Lexington, KY 40506-0108 

Kok-Meng Lee 
George W. Woodruff School 
of Mechanical Engineering, 

Georgia Institute of Technology, 
Atlanta, Georgia 30332-0405 
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Design 
In machine vision applications, accuracy of the image far outweighs image appearance. 
This paper presents physically-accurate image synthesis as a flexible, practical tool for 
examining a large number of hardware/software configuration combinations for a wide 
range of parts. Synthetic images can efficiently be used to study the effects of vision system 
design parameters on image accuracy, providing insight into the accuracy and efficiency 
of image-processing algorithms in determining part location and orientation for specific 
applications, as well as reducing the number of hardware prototype configurations to be 
built and evaluated. 

We present results illustrating that physically accurate, rather than photo-realistic, 
synthesis methods are necessary to sufficiently simulate captured image gray-scale values. 
The usefulness of physically-accurate synthetic images in evaluating the effect of condi
tions in the manufacturing environment on captured images is also investigated. The 
prevalent factors investigated in this study are the effects of illumination, the sensor 
non-linearity and the finite-size pinhole on the captured image of retroreflective vision 
sensing and, therefore, on camera calibration was shown; if not fully understood, these 
effects can introduce apparent error in calibration results. While synthetic images cannot 
fully compensate for the real environment, they can be efficiently used to study the effects 
of ambient lighting and other important parameters, such as true part and environment 
reflectance, on image accuracy. We conclude with an evaluation of results and recom
mendations for improving the accuracy of the synthesis methodology. 

1 Introduction 

For machine vision system applications such as part presenta
tion, the accuracy of image gray-scale pixel values far outweighs 
image appearance (Lee, 1991); in this paper, we present 
physically-accurate image synthesis as a rational basis for design
ing both hardware and software components of a vision system. 
This is a very complex task, since such systems consist of many 
parts and the most proficient systems are designed by considering 
the integrated hardware and software arrangement. Numerical 
simulation is a flexible, practical tool for investigating a large 
number of hardware/software configuration combinations for a 
wide range of parts. 

Prior machine vision research includes the use of photo-realistic 
synthetic images as an aid in testing model-based vision algo
rithms (Wu et al., 1990). However, these images were generated 
with the simple image synthesis algorithms available with most 
commercial CAD systems, which assumed idealized or nonphys-
ical reflectance models, limited light source models and unrealistic 
camera optics. While the images obtained with these packages 
were useful in gaining some insight into algorithm performance, 
their usefulness was limited (Chen and Mulgaonkar, 1991). These 
photo-realistic images were generated based upon work developed 
in the area of computer graphics, where appearance of the image 
to the viewer is generally the primary concern. Meyer et al. (1986) 
modeled the generation of a physically-accurate synthetic image. 
In their model, the environment description includes the scene's 
reflective and emitting properties, in addition to geometrical in
formation and is processed via a simulation based upon the physics 
of illumination, instead of the idealized or nonphysical reflectance 
and illumination models used to produce photo-realistic images. 

It was, in fact, attempts to improve the realism of photo-realistic 

Contributed by the Manufacturing Engineering Division for publication in the 
JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING. Manuscript received May 
1996; revised Feb. 1999. Associate Technical Editor: C-H. Meng. 

images that resulted in the development of highly accurate meth
ods for calculating illumination, which supported the development 
of physically-accurate synthesis methods (Goral et al., 1984; 
Nishita and Nakamae, 1985; Sillion et al., 1991; Kajiya, 1986; 
Ward et al., 1988). The use of such physically-accurate images in 
an iterative method for improved image understanding was pro
posed by Gagalowicz (1990). Some researchers, while agreeing 
that understanding the illumination problem is important, felt that 
most physically-accurate synthesis methods were too computation
ally expensive to be useful in vision system design (Cowan, 1991). 
Rushmeier et al. (1992) have developed an efficient methodology 
for generating physically-accurate synthetic images that predict the 
gray-scale values of images captured by a computer vision system. 
Results from this research confirm that physically-accurate image 
synthesis methods, rather than those methods currently available 
with standard CAD packages, are necessary to sufficiently simu
late captured images. Highly-accurate methods of calculating illu
mination establish the basis for generating the array of pixel 
radiances representing scene illumination. Most graphics methods, 
however, assume an infinitesimal pinhole to find a solution for the 
rendering equation (Kajiya, 1986), which calculates the average 
radiance incident on each image pixel for a wavelength band. 

The benefits of this research are briefly summarized as follows: 
(1) It provides a rational basis for designing the hardware and 
software components of a machine vision system. Specifically, the 
models which account for the effects of finite-sized pinhole, sensor 
nonlinearity, and ambient illumination have been developed. (2) 
The models have been experimentally validated. Additionally, the 
results provide an opportunity to perform an in-depth study of the 
factors that can significantly degrade the performance of image-
processing algorithms and aid in the determination of critical 
design parameters. (3) A third contribution is the foundation for a 
CAD-tool which utilizes physically-accurate synthetic images to 
accurately and inexpensively predict the performance of a pro
posed vision system design prior to implementation or the con
struction of a prototype, minimizing the need to build and test a 
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Fig. 1 Geometry of illumination simulation for an infinitesimal pinhole 
camera 

large number of hardware configurations. Such a tool would pro
vide an effective means to compare algorithms and predict the 
optimal algorithm (and optimal performance) for a specific appli
cation earlier in the design phase, significantly reducing imple
mentation time and improving industrial reliability. 

The remainder of this paper is organized as follows: the theory 
of physically-accurate synthetic image generation, which includes 
a discussion of the governing equations necessary to generate 
physically-accurate images is followed by a detailed comparison 
of the differences between photo-realistic and physically-accurate 
synthesis methods. Practical implementation issues of the synthe
sis methods are then discussed. The Experimental Investigation 
section begins with a description of the hardware test-bed, fol
lowed by a discussion of the computational model for radiative 
transfer, which provides the foundation for physically-accurate 
image synthesis. This is followed by the results of the specific 
experiments performed to better understand the effect of parame
ters, especially [source and ambient] illumination; the paper con
cludes with a discussion of the results and recommendations for 
future work. 

2 Fundamental Equations 

The geometry of the illumination incident at each image pixel is 
diagrammed in two dimensions in Fig. 1. Radiance incident on the 
sensor pixel is equal to the radiance leaving the real-world object 
that is visible to the sensor through the pinhole. The solid angle of 
the cone rays leading to the patch on the object is equal to that 
corresponding patch in the image. Thus, it can be shown that the 
irradiance (or the power per unit area) incident on the surface of a 
pixel is given by 

ii(opJ, <M = i0(efJ, <*>,.,) cos BpJdn (i) 

where 

6 and <$> = spherical coordinates (polar angle, 6, and azi-
muthal angle, </>) which specify the location and 
direction in three-dimensional space, 

I:(Qpj> 4>pj) = irradiance falling on a point (xp, yp) on the 
pixel along the ray from the object, 

L(8P,i> <PP.i) ~ radiance (or the power per unit area per unit 
solid angle) from the object in the direction to
ward the pinhole, and 

dCl = solid angle subtended by the corresponding 
patch on the real-world object as seen from the 
center of the pinhole. 

In machine vision, captured image values are proportional to 
£Pixd(A), the average energy/area incident on the sensor pixel, or 

^ ( A ) = £,(ep,„ < M M . , yr<
 A)rfAp™i (2) 

•* pixel-area 
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where Et{Qpi, (j>pi) is the energy/area incident on the sensor pixel 
at that point along that direction and f(xp, yp, A) is the spatial 
sensor sensitivity for a given wavelength band at that point on the 
pixel. The energy/area incident on the pixel for a specified period 
of time T can be solved by integrating the irradiance over the 
pinhole area as follows: 

Ei(6p,i, </>„,,-) = I0(Qp,h 4>P,i) cos 6p,,Trfo)pinhole (3) 
pinhole 

where T represents exposure time to scene illumination; and do) is 
the infinitesimal solid angle in the direction of the pinhole as seen 
from the patch of object. The irradiance, I0(6pJ, </>,,,,), is equal to 
that leaving the visible real-world object and depends on the 
irradiance falling on the surface from all directions. This irradiance 
may be from light sources or from secondary reflections from other 
surfaces in the environment. For reflective surfaces, the object 
radiance is not known a priori and must be calculated; its value 
depends on the light energy incident on the object as illustrated in 
Fig. 2. The object radiance is given by the equation of radiative 
transfer (Siegel and Howell, 1981): 

io(ev,„, <K.) 

= p M ( e „ , <k0; Ovj, tvjMK, 4>«j) cos e^da, (4) 
•" n 

where 

PbdiO,,,,, <£„,„; 
Qv.i> 4>v,i) = bi-directional reflectance of the object at that 

point, and 
/,•(<?„,(, 4>v,i) = incident radiance on the real-world object at 

point (xv, yv) on the object, and the integral is 
over the entire hemisphere of directions above 
that object at that point. 

In Eq. (4), the incident radiance, /,•(©„,,-, $„,,), may originate at 
light sources or be due to multiple interreflections within the 
environment. A light source visible in direction (0„,,-, <£„,,-) con
tributes an incident radiance equivalent to the emitted radiance of 
the source in that direction. If something other than a light source 
is visible in direction (0„,, 4>„,,-), this equation is recursive and its 
complete solution accounts for all possible geometric illumination 
effects, e.g., shadowing, highlights, etc. 

The nonlinearity of the gray-scale response of an imaging sensor 
is specified by an exponent "gamma 7" and thus, the sensor for a 
computer vision system is modeled here as a power law (Lee, 
1994) as follows: 

Gpixel = K\ EpixeMs(\)dX + G„ (5) 

Fig. 2 Model of radiance leaving a surface 
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Fig. 3 Model of the synthetic imaging process 

where GpixlJ) is the pixel gray-scale value; G0 is the dark-current 
(zero illumination) value; and Efi%t{(\) is the pixel energy/area 
value. 

Equations (2)-(5) provide an analytical model for generating the 
output signal for a computer vision system characterized by sensor 
sensitivity K and system response linearity y. K and y are 
empirically-determined constants and s(A) characterizes the sensor 
as a function of wavelength for a given sensor. A gamma of unity 
yields a linear response, whereas less than unity compresses the 
bright end and greater than unity compresses the dark end. In Eq. 
(5), the average energy incident over the pixel area is calculated 
from Eqs. (2) and (3), which require the solution to Eq. (4). 

At this point, it is worthwhile to point out the primary differ
ences between the photo-realistic and physically-accurate image 
generation processes, using the governing equations given above. 
Photo-realistic images are usually generated using limited light 
source (e.g., parallel or isotropic point light sources) and optics 
(i.e., infinitesimal pinhole) models, idealized or nonphysical (i.e., 
Lambertian or Phong) reflectance models, and spectral dependence 
is usually ignored. Physically-accurate synthesis methods, on the 
other hand, are able to incorporate finite aperture and lens effects 
[Eq. (3)], include spectral dependence [Eq. (2)] and sensor non-
linearity [Eq. (5)], as well as model reflectance properties (e.g., 
specular, diffuse, anisotropic) and illumination distributions real
istically [Eq. (4)]. 

3 Physically-Accurate Image Synthesis 
Figure 3 compares the processes used to generate synthetic 

images for (a) photo-realistic and (b) physically-accurate synthetic 
images for vision system applications. In this context, the term 
"photo-realistic" refers to images that "look like they could be 
photographs." Images generated for this purpose are often ren
dered via methods that use heuristics to make images appear 
realistic. They are not necessarily generated by simulating light 
propagation and the transfer function of the imaging device; there
fore, though they appear realistic, they cannot be relied upon to 
yield gray-scale intensity values which are representative of the 
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Fig. 4 Calibration experimental setup 

actual scene. As shown in Fig. 3(b), physically-accurate images are 
based upon the physics of illumination and the behavior of the 
sensing device. An accurate mathematical model describes the 
physical scene and the vision system used to capture that scene. 
This model is used to simulate scene illumination, which is rep
resented as an array of [pixel] radiances. This array of radiances is 
then converted to energy/area values, which are transformed by a 
mapping based on a model of the system sensor and how it 
converts incident light energy into gray-scale values. 

The physically-accurate synthetic image is simulated in a two 
step process. In the first step, Radiance, a freely-distributed soft
ware package from the Lighting Systems Research Group of the 
Lawrence Berkeley Laboratory, is used to solve the radiative heat 
transfer equation, Eq. (4). In the second step, the sensor model for 
the computer vision system is modeled using the power law given 
in Eq. (5). Several implementation issues are discussed as the 
following subsections. 

3.1 Finite-Size Pinhole Model. The specific Monte Carlo 
solution method used in Radiance has been validated by both 
physical measurements and comparison with other software pack
ages written to calculate illumination (Grynberg, 1989). However, 
both the sensor pixels and pinhole, though small, have finite size 
that can not be accurately approximated by the infinitesimally 
small pixels and pinhole assumed by Radiance. This problem can 
be separated into two parts, and each solved separately. The first 
problem, that of finite pixel size, is minimized in Radiance by 
assuming an infinitesimal pinhole, shooting many rays through 
each pixel (i.e. sampling over the pixel area) and averaging the 
radiance values calculated for each ray. The software does not 
have an explicit mechanism for integrating over a finite aperture; 
therefore, the array of radiance for the finite pinhole is approxi
mated by a weighted average of radiance calculated using a finite 
number of representative infinitesimal viewpoint positions within 
the finite pinhole. The weighting signifies the percentage of the 
finite pinhole represented by that infinitesimal viewpoint; in this 

Illumination » CCD Signal 
Amplification 

A/D 
Converter 

Video RAM 

Image 

Fig. 5 Calibration of system response 
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Fig. 6 Illustration of reflective surface modeling 

investigation, viewpoint positions were chosen such that the rep
resentative areas and, therefore, weightings were equal. Mathemat
ically, the weighting function is defined as 

wt A 

and 

2 

where a, is the area represented by the (infinitesimal) viewpoint 
sample; A is the total pinhole area; and N is the number of 
(viewpoint) samples used to approximate the finite pinhole. 

3.2 Sensor Model. To transform the array of irradiance de
termined by the computational model into predicted gray-scale 
values corresponding to a particular system, K and y, are cali
brated experimentally for the system which accounts for the sys
tem non-linearity. Figure 4 suggests a general technique for cali
brating K and y, where a known illumination source of a single 
wavelength band is sampled. Therefore, the spectral sensitivity 
function s(X) is constant in Eq. (5) and its contribution can be 
absorbed into the value for K. Note that the uncertainty in the 
value of the power output for the LED does not affect the value of 
y; however, it would "scale" K, shifting the histogram of gray
scale values left or right. For a specified source of intensity Ps 

(power per unit solid angle) with an included angle, e, the small 
planar patch of area on the sensor at a distance D from the source 
subtends a solid angle of ir tan2 (e/2). Over an exposure time of T 
seconds, the intensity of the source on the sensor is 

E = TPSTT tan2 (e/2) (6) 

A series of images obtained over a wide range of exposure times 
ensures that a full range of experimental gray-scale output values 
(from the dark current value to saturation) is obtained. 

Figure 5 shows a schematic of the experimental setup where the 

Fig. 7 FIVS with illumination system 
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imaging sensor, signal-conditioning amplifier, and AID converter 
are treated as an integrated unit. The relationship between the 
average gray scale value and the average energy of the source over 
the exposed area on the sensor can be determined from Eq. (5), 
which can be rewritten in the following form to facilitate the 
determination of K and y: 

ln(G - G„)-= ylnE + lnK. (7) 

3.3 Reflectance Model. Perfectly specular scatters result in 
a reflection of 100 percent of the irradiation into an infinitesimal 
solid angle (i.e. a single ray) in the mirror direction. In practice, 
however, the specular lobe is finite in size and has a width 
proportional to the roughness of the scattering surface. Therefore, 
the radiance leaving a specular surface is modelled as a Guassian 
lobe in the mirror direction as shown in Fig. 6(a). Retroreflective 
surfaces are modeled by using a texture map to perturb the surface 
normal so that it faces the direction of incident illumination. Figure 
6(b) shows how the specular bi-directional reflectance definition 
can be modified to model a retroreflective surface by perturbing 
the surface normal. A detailed process of modeling the retroreflec
tive surface for use with the software Radiance can be found in 
(Parker, 1996). 

4 Experimental Investigation 
While opportunities to increase image accuracy by studying and 

understanding the parameters which influence image accuracy 
exist in many areas, the most important parameters include illu
mination distribution and ambient lighting, part reflectance, and 
geometric alignment. This study concentrated on the effects of 
illumination distribution and ambient lighting on image accuracy. 
Four sets of experiments were conducted to examine the effects of 
design parameters on image accuracy. First, the sensor/system 
sensitivity and linearity constants required to establish the sensor 
model [in Eq. (5)] were empirically determined using the proce
dure described in Section 3.2; the precision of the sensor model 
was then examined. Secondly, the ability of generating synthetic 
images of retroreflective sensing was demonstrated. The captured 
images were used a rational basis for evaluating these synthetic 
images. Thirdly, the accuracy of image edges were examined 
experimentally. Finally, the effect of ambient lighting on image 

Fig. 8 Captured image of retroreflective field 
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Fig. 9 Synthetic images of retroreflective field—Clockwise from upper-
left-hand corner: (a) generated with a CAD-package reflectance model (b) 
Radiance-generated image, using infinitesimal pinhole and cone-angle 
illumination model (c) image with finite pinhole model and Gaussian 
illumination distribution (d) finite pinhole, cone-angle illumination model 

accuracy was investigated using synthetic images and validated 
experimentally. 

4.1 Determination of Vision System Parameters. The vi
sion system chosen for system emulation and experimental vali
dation is FIVS (Flexible Integrated Vision System, shown in Fig. 
7), which was developed at Georgia Tech (Lee and Blenis, 1994). 
To determine the values of K and y for the system, a single 
AlGaAs LED, which has a dominant wavelength of 650 nm, a 
typical radiant intensity of 47.1 mW/sr and a 7 deg cone angle, was 
chosen as the illumination source and positioned as shown in Fig. 
4. Images were captured for exposure times ranging from 0 to 32 
ms, yielding a dark current gray-scale value of 22 and a saturation 
value of 181. Using the method of least squares (as described in 
Section 3.2) and the typical radiant intensity and cone angle values 
given above to estimate the source power/area, a K value of 3.38 X 
104 and a 7 of 0.85 were obtained. 

4.2 Synthetic Images of Retroreflective Sensing. The con
figuration (Fig. 7) utilizes a structured, co-located illumination 
system consisting of twelve AlGaAs LED's (with a 7 deg cone 
angle) placed circumferentially (in a 25 mm diameter) around the 
lens (focal length = 10.59 mm). This co-located illumination 
system (Lee, 1994) as shown in Fig. 7 is an effective prototype for 
the validation of the proposed methodology for several reasons. 
The use of retroreflective materials in this application enables the 
capture of reliable gray-scale images with a high object-to-
background contrast without a detailed prior knowledge of object 
geometry and surface reflectance. Since an ideal retroreflector 
returns the incident ray in the same direction, retroreflective vision 
sensing also facilitates the use of low-power, low cost light sources 
for part presentation. The chosen CCD sensor has a strong spectral 

response at the dominant wavelength provided by the illumination 
sources and is reasonably insensitive to the effects of ambient 
lighting. 

Typical experimentally obtained properties of commonly used 
retroreflective materials are available in the following references 
(Federal Test Standard, 1977; Rennilson, 1980). In this investiga
tion, 3M® Scotchlite 3870 retroreflective sheeting was used, the 
characteristic properties of which can be found in Lee (1994). To 
qualitatively compare various methods of generating synthetic 
images with retroreflective vision sensing, two experiments were 
conducted. 

/ Synthetic Image of Retroreflective Background 
Synthetic images of a retroreflective background were generated 

and compared to a captured image of the retroreflective field (Fig. 8) 
obtained with the FIVS located 1 meter above a flat retroreflective 
sheeting. The comparison of synthetic images is given in Fig. 9. 

As seen in Fig. 9(a), a CAD-generated image assuming an ideal 
diffuse surface results in an image that is nearly black for the 
illumination level and exposure time range of captured image 
conditions. The CAD-generated image confirms the need for an 
accurate reflectance model, as used in Figs. %b)-{d). Figure 9(b) 
illustrates Radiance's ability to model a retroreflective back
ground. However, the illuminated area is too small and too sharply 
defined. Incorporation of the finite aperture [Fig. 9(d)] results in an 
image with a more acceptable transition between the illuminated 
and non-illuminated areas, but the illuminated area is still too 
small. The importance of accurate source emission distribution 
modeling is shown in Fig. 9(c). 

// Synthetic Image of Retroreflective Calibration Board 
A calibration board containing a 5 X 5 grid of retroreflective 

circular dots of § inch (15.625 mm) diameter, which were spaced 
by a | inch (19.05 mm) center-to-center distance, was the subject 
of captured and simulated images. The retroreflective calibration 
pattern was created by printing a partially diffuse black pattern on 
retroreflective sheeting. The captured and synthetic images of the 
calibration board are compared in Fig. 10. The comparison illus
trates the limitations of infinitesimal pinhole modeling (Fig. 
10(b)); averaging over the finite aperture results in an image (Fig. 
10(c)) that more nearly reflects the gray-scale values of the cap
tured image. 

4.3 Prediction of Edge Transition. In machine vision, the 
detection of edges is often necessary. Thus, an experiment was 
conducted to compare synthetic and captured edge images. Rep
resentative captured and synthetic images of the transition between 
a black diffuse surface and a retroreflective background are shown 
in Fig. 11. Ten successive images of the transition between the 
black matte and retroreflective surfaces were captured. An analyt
ical edge model (Lee, 1994) facilitated image analysis and pro
vided an additional comparison. In the model, the ratio of the 
radius of the pinhole projection from point P on the target plane to 
the distance, D', between the pinhole plane and the target plane, is 
derived from the geometry to be 

R 
W 

1 
2F 

1 + (8) 

a) Actual captured image b) Synthetic image assuming (c) Physically accurate image with 
infinitesimal pinhole finite pinhole 

Fig. 10 Comparison of captured and synthetic images 
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(a) Captured image (b) Synthetic Image 
Fig. 11 Edge images 

where 

R = the radius of the pinhole projection of point P on the pin
hole plane onto the target plane, 

D' = the distance between the pinhole and target planes, 
F = fldp for a pinhole of diameter dp (as simulated in this 

experiment), and / is the focal length. 

The intensity of the point P on the detector is proportional to the 
overlapping area between the pinhole projection and the bright 
area on the target plane. The highest and lowest intensities, /max and 
7min, correspond to the cases when the pinhole is completely 
covered by the bright and dark areas, respectively. Therefore, 

/~_/m;" = l - j - [ c o s - S - S V ( l - S 2 ) ] (9) 
' max •* m i n " 

D' 
S = — (tan J3 - tan 0O) (10) 

where Si < 1 

/ = pixel gray-scale intensity (Maximum and minimum values 
denotes maximum and minimum gray-scale intensities near 
the edge). 

S = the normalized displacement from the edge to the center of 
the pinhole projection, and 

j3 = the entrance angle (the angle between the surface normal 
of the target plane and the incident light). 

The edge model was used to refine the "estimated true edge 
position" of the captured edges, and this mean position estimate 
used as the edge position in the synthetic images. Two major 
differences exist between imaging conditions for the synthetic and 

captured images (Fig. 11). First, the real image was captured in 
ambient conditions with a lens, rather than the pinhole camera and 
controlled lighting conditions simulated. It was determined exper
imentally using Tsai's (1987) camera calibration that the effect of 
the lens distortion is small. However, the addition of a lens results 
in higher (i.e., brighter) gray-scale values in the captured image. 
Second, the effect of additional ambient illumination (in Fig. 
11(a)) is clearly shown in the absence of the perfect semicircular 
illuminated area predicted in the synthetic image (Fig. 11(b)). The 
vertical edge in the synthetic image was placed to match that of the 
captured image as nearly as possible, corresponding to a pixel 
position of 96.7, j3„ = 0.0015 radians, D' = 1 m , / = 10.59 mm 
and dp = 0.1 mm. An exploded view of the edge transition 
predicted using Eq. (5) with non-linearity values of 0.85 and 0.90 
is shown in Fig. 12. 

As shown in Fig. 12, the captured edge has a similar transition 
to the simulated edges, with a nonlinearity factor between 0.85 (the 
experimental value) and 0.90. The edge model or Eq. (9), which 
does not account for the illumination distribution, is inadequate to 
predict the edge transition accurately, even after it is corrected for 
y. These results show the importance of the y (sensor nonlinearity) 
calibration for the system and confirm that the empirical value of 
0.85 is reasonable. They further illustrate the importance of an 
accurate illumination simulation that incorporates finite pixel and 
pinhole approximations in synthetic edge construction. 

4.4 Effect of Ambient Illumination. While the synthetic 
images illustrate that correct reflectance modeling is important, the 
effects of ambient lighting are also critical in accurately simulating 
captured images for applications where accuracy is of particular 
concern. We explore the effect of the ambient lighting on calibrat
ing the focal length of the FIVS using Tsai's (1987) camera 
calibration algorithm. In this context, ambient lighting refers to 
external lighting in addition to the co-located LED illumination 
(Fig. 7). The external lighting consists of two 400 W metal halide 
lamps located at (x = ±0.06 m, y = 0.06 m, z = 0.82 m) 
relative to the coordinate frame of the calibration board. The 
emission distribution of two lamps was modelled as Gaussian 
(with a beam width of 7 degrees) and the RGB emission values (in 
W/m2 • sr) were chosen to reflect a power of 400 watts and to 
emulate the typical distribution of metal halide lamps. 

The simulated orientation of the calibration board (Subsection 
4.2 part II) was at an optimal position for yielding the calibrated 
focal length (Parker and Lee, 1997), with rotations about the x-, y-, 
and z-axes of 46, 6 and —2 degrees, respectively, and a focal 
length of 12.5 mm. The resulting synthetic image is shown in Fig. 

200 

180 

160 

140 

120 

j j 100 
a 

| 80 

60 

40 

20 

0 
H 90 92 94 100 102 1 14 

| Gamma=0.9 1 

t— —Gamma = 0.85 | 

! Captured Edge | 

[- •-^Modeji Ckmraj* -85] 

x-positlon 

Fig. 12 Effect of gamma on synthetic edge modeling 
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Fig. 13 Typical synthetic calibration image at a particular orientation 

Table 1 Effect of variability in lighting conditions on calibrated focal 
length 

Lighting Focal length 

Condition Captured Average Synthetic Image 

Controlled 12.59 12.450 

Ambient 12.85 12.546 

13. As shown in Table 1, the image simulated under ambient 
conditions yielded a longer apparent focal length. 

The effect of ambient lighting on camera calibration was then 
experimentally validated using captured images. Ten consecutive 
controlled and ambient lighting images captured of the board were 
used to determine the effects of ambient lighting on Tsai's camera 
calibration. As in the simulated case, images captured under am
bient conditions also yielded a longer calibrated focal length. The 
results suggest that illumination has a significant influence on 
camera calibration results. The difference in apparent focal length 
is not as great in the simulated case (0.8 percent versus an average 
increase of 2 percent in the captured images). This is believed to 
be due, at least in part, to the presence of less ambient illumination 
in the synthetic image, most noticeably, the unmodeled sources 
such as sunlight and its inter-reflection present in the captured 

5 Illustrative Design Tool 
The primary motivation of this investigation is to demonstrate 

the use of synthetic image generation as a tool for machine vision 
system design through identifying the critical illumination design 
parameters on camera calibration. 

A 24 full factorial experiment was designed to generate the 16 
synthetic images used to study the effects of the chosen factors on 
Tsai's algorithm (Table 2). The variations investigated represented 
reasonable permutations possible in the FIVS system. As modeled, 
a perfectly aligned LED ring is parallel to the ry-plane; therefore, 
an "arbitrary" misalignment was modeled as a rotation of the ring 
about the y-axis, followed by a rotation about z- Small variations 
in the source intensity and illumination distribution were modeled 
by perturbing nominal intensity and (Gaussian) beam width values, 
respectively. Similarly, variations in the direction of the source 
optical axis were characterized by a small nominal angle of devi
ation from the original optical axis of the LED and a perturbation 
parameter. For each factor, two sets of eight samples correspond
ing to the high and low level are compared. 

For the analysis, the designed focal length was 12.5 mm, view
ing distance was 0.79 m (31.1 in), and, exposure time was 130 ms. 

Table 3 Effect of design factors on calibrated focal length 

Factor Level Calibrated Focal Length 

A B C D Mm (Abs.) %Error 

L L L L 12.450 0.40 
L L L H 12.152 2.78 
L L H L 12.373 1.02 
L L H H 12.528 0.22 
L H L L 12.588 0.70 
L H L H 12.575 0.60 
L H H L 12.558 0.46 
L H H H 12.605 0.84 
H L L L 11.037 11.70 
H L L H 12.763 2.10 
H L H L 11.150 10.80 
H L H H 12.371 1.03 
H H L L 11.612 7.10 
H H L H 12.367 1.06 
H H H L 11.624 7.01 
H H H H 12.164 2.69 

The results showing the effects of the factors on the focal length 
calibration are given in Tables 3 and 4. 

As shown in Tables 3 and 4, the design factors A, D, and 
interaction AD (LED ring orientation, LED optical axis variation 
and the interaction of these two effects, respectively) have a 
significant effect on calibrated focal length. For unreplicated fac
torials (i.e., the sample size at each level of the design is 1), an 
effect, t;, is determined to be significant if its absolute value 
exceeds the random variable, ta/2imn, where a represents the sig
nificance level (or Type I error) and m is the number of responses 
(Lenth, 1989). For this investigation, a was chosen to be 0.05 and 
the number of observations for a 24 full factorial experiment is 16; 
therefore, the critical value, fo.025,5, was 2.571. A misalignment in 
LED ring orientation led to the highest error in calibrated focal 
length and, therefore, had a very significant effect on calibrated 
focal length. The interaction between LED ring orientation and 
variation in optical axis was the next most significant cause of 
error in calibrated focal length, having a slightly higher effect (due 
to the strong influence of LED ring misalignment) than variations 
in LED optical axis alone. Variations in LED intensity and beam 
width were not found to have a significant effect on calibrated 
focal length at the investigated values. 

6 Conclusions 

This paper discusses a method for generating physically accu
rate synthetic images for manufacturing applications where accu
rate location and orientation of the object outweigh its appearance. 
The synthesis method is able to incorporate finite aperture and lens 
effects, includes spectral dependence and sensor non-linearity, as 
well as models reflectance properties (e.g., specular, retroreflec-
tive) and illumination distributions realistically. 

The physically-accurate synthetic image is simulated in a two 
step process. In the first step, Radiance, a freely-distributed soft-

Table 2 Factor and response description for illumination and calibration investigations 

Factor and Response Description Low Level High Level 

Factor A: Illumination Offset (LED ring) 
Factor B: LED Intensity [ WI m2 • sr ] 
Factor C: LED Beam Width 
Factor D: LED Optical Axis Offset 

a = /? =0° a =1.2°,/? =-85° 
2324 2324 nominal, a=0.15 
7.6° 7.6° nominal, a=OJ0 
0" 1° nominal, a=0.90 

Response: Calibrated Focal Length (n=l) 
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Table 4 Significance of design parameters on calibrated focal length 

Effect U 
ID /(mm) Abs. %Error 

A -5.91 5.02 
B 1.58 -1.32 
C -0.21 -0.33 
D 5.15 -3.83 

AB -0.47 -0.82 
AC -0.96 0.21 
AD 5.42 -4.34 
BC -0.26 0.75 
BD -1.84 1.06 
CD -0.26 -0.16 

ABC 0.48 0.21 
ABD -2.28 1.42 
ACD -1.54 0.58 
BCD -0.13 0.76 

ABCD 0.85 -0.24 

ware package from the Lighting Systems Research Group of the 
Lawrence Berkeley Laboratory, is used to solve the radiative heat 
transfer equation. In the second step, differences between photo
realistic and physically-accurate image generation models are 
highlighted, and methods to overcome limitations for generating 
physically accurate images are discussed: Physically-accurate 
pixel values are related to the energy/area falling on the sensor 
pixel and must be transformed by a mapping based on the vision 
sensor model. Modeling the relationship between pixel gray-scale 
and energy/area values as a power law, and using the empirically-
determined sensitivity constants for the FIVS system results in 
synthetic images which more correctly predict captured image 
values. Furthermore, the results show that both the sensor pixels 
and pinhole, though small, have finite size that can not be accu
rately approximated by infinitesimally small pixels and pinholes; 
as demonstrated, the finite pinhole sampling method produces 
significantly improved images. Additionally, the significance of 
ambient lighting effects on the captured image and, therefore, on 
the camera calibration was shown; if misunderstood, these effects 
can introduce apparent error in calibration results, which include 
the focal length, lens distortion and the transformation to deter
mine part location and orientation. While synthetic images cannot 
fully compensate for the real environment, they can be efficiently 
used to study the effects of ambient lighting and other important 
parameters, such as true part and environment reflectance, geo
metric alignment, etc. on image accuracy. 

Future work includes investigating improved reflectance and 
illumination modeling; this provides significant opportunities for 
improvement: It is unlikely that the simple reflectance modeling 
used to represent the board background or the retroreflective dots 
is sufficient to adequately predict captured-image performance. 
Also, the light sources chosen for the FTVS system are unlikely to 
be identical and may vary significantly from the typical pattern 
used in the simulations shown above (e.g., the distribution pattern 
may not be symmetrical). Distribution of ambient lighting sources 
may vary similarly. After addressing these issues and sufficiently 

validating the methodology, simulated images will be used to 
study a variety of hardware design parameters and their effects on 
image accuracy. 
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